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1 Introduction: a simple case

Suppose we observe samples from a stationary process modeled by z; = u+¢;, where z; is an observation,
u can be thought of (constant) system state, and ¢; is a measurement error, which is normally distributed
with zero mean and standard deviation o. We know that a good estimator for p is ji := Zx := % Z?Zl Zi-
When a new data point arrives, we can (and should) update our estimation. Rather than computing
the average all over again, we can just update via
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i.e., the updated estimate is the current estimate + a term in the direction of the prediction error, with
a small magnitude.

2 The Kalman Filter

2.1 Model

The Kalman filter model is
Xy = FyXi_1 + Brup + Wy,

where:

e X} € R? is random variable representing the state of the system at time & (unknown)



F}, is a linear state transition model, applied to the previous state (known)

uy, is optional external control input(known)

By, is the control-input model (known)

W}, is the process noise, which is a sample from multivariate Gaussian with zero mean and covari-
ance Q.

In addition, and time k& we observe a sample Z, = H, Xy + vk, where:
e Hj is the state-observation model (known)

e W} is measurement noise, drawn from a multivariate Gaussian with zero mean and covariance Ry.

2.2 Example

A truck drives along a straight road, starting at position 0. Time indices k refer to At intervals. We
want to keep track of the truck position y and velocity g, i.e.,

Yt
T — . .
g (yt>

We consider constant F', Q, R, H (hence time indices are omitted, and B = 0, as no external inputs are
involved. We set the matrices as follows. We assume that at the k’th time interval there is a constant
acceleration given by ag, which is normally distributed with zero mean and o, standard deviation. Then
applying Newton’s laws, we can write

= Frp_ +a;G,
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xp = Frp 1+ Wi,

where

and

This means that we can write

with
W ~ GGT N(O, 0'(21)

i.e., wy, is a sample from a multivariate normal distribution, with zero mean and covariance o2GGT. At
time k£ we measure the position of the truck

zr = Hxp + vg,

where H = (1,0)T and vj, ~ N(0,0?) is measurement noise.



2.3 The conditional distributions

Let Z;, = (21, ...2x) denote the first k observations collectively. At time k— 1 we want to predict the next
system state based on Z;_1, denoted as Zj;_; := E[Xx|Z,_1]. In addition, once the k’th observation z
arrives, we update our model to Ty := E[X|2x]. We also model the covariance matrices corresponding
to the random variables X|Z,_1 and X|Z, (whose means we denote Zj,—; and &y, respectively) by

Pyji—1 = E [(Xp — @gpp—1)(Xe — Zpp—1)" 2],

and
Py = E [(Xk — ) (Xk — )" |25 -

Recall from the previous lesson that if ( ) is a multivariate Gaussian, then X|Z is also a multi-

Z
variate Gaussian with mean pyx + EXZZEIZ(Z — pz) and covariance L xx — ZXZZ;ZZZX. Since all
noises in our case are Gaussian, and all random variables are linear combinations of Gaussian random
variables, it follows that X |Zx_1 ~N (jjkr\k:—hpk\k—l) and X |z ~N (i'k\kapk\k)~

2.4 Prediction and update

Suppose that at some point, we have ;1 and Pyx—1. In the above example, suppose we know that
at time 0 both the position and the velocity are both zero i.e.,

R 0
Tplk—1 = <O)
0 0
Ppj—1 = <0 0) .

The algorithm works in two alternating steps:
Prediction: Since Xj = F X;_1 + Brug + Wi we have

and

Tpjp—1 = E[Xg|Zh-1] = Fr E[ X 1|2k 1] = Fx@r_1jx—1 + Brus,
Pyji—1 = Cov(Xy|Ze-1) = FpPy_13—1Fyf + Qu

where the latter equation holds as given Z,_1, Xx_1 and W} are independent.
Update: Since Z, = Hpy Xy + Vi,

Xk ) PR Tk—1 Prjp—1 Pyj—1 Hif _
Zy, - Hidpi—1| " | HePrjg—1  HiPrjp—1H! + Ry,
Since {)Z(k] ’ Zi—1 is Gaussian, conditioning on Zj, (i.e., on Zj), we have
k
Tpp = E[Xg|2Zk]
. -1 .
= E[Xy|Z-1] + Pojp—1 HY (HePep—rH{ + Ri)  (Zk — Hpdppp—1)
and
Py = Cov[ Xk | 2]
-1
= Pyjr—1 — Peppo1 HY (HpPrp—1HY + Ry)  HiPyjj—1.



Remark 2.1. The factor Z), — HyZpji—1 = 2x — E[Zx|Zk — 1] is called innovation, whose covariance is
HyPy—1H}! + Rk.

Remark 2.2. The factor Pk‘k_lHkT (HkPMk._ng + Rk)f1 is called the Kalman gain, and reflects the
importance of the innovation.
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