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1 Introduction: a simple case

Suppose we observe samples from a stationary process modeled by zi = µ+ϵi, where zi is an observation,
µ can be thought of (constant) system state, and ϵi is a measurement error, which is normally distributed

with zero mean and standard deviation σ. We know that a good estimator for µ is µ̂ := z̄k := 1
k

∑k
i=1 zi.

When a new data point arrives, we can (and should) update our estimation. Rather than computing
the average all over again, we can just update via

z̄k+1 =
1

k + 1

k+1∑
i=1

zi

=
1

k + 1

(
k∑

i=1

zi + zk+1

)

=
1

k + 1

(
k
1

k

k∑
i=1

zi + zk+1

)

=
k

k + 1
z̄k +

1

k + 1
zk+1

= z̄k − 1

k + 1
z̄k +

1

k + 1
zk+1

= z̄k +
1

k + 1
(zk+1 − z̄k),

i.e., the updated estimate is the current estimate + a term in the direction of the prediction error, with
a small magnitude.

2 The Kalman Filter

2.1 Model

The Kalman filter model is
Xk = FkXk−1 +Bkuk +Wk,

where:

• Xk ∈ Rd is random variable representing the state of the system at time k (unknown)

1



• Fk is a linear state transition model, applied to the previous state (known)

• uk is optional external control input(known)

• Bk is the control-input model (known)

• Wk is the process noise, which is a sample from multivariate Gaussian with zero mean and covari-
ance Qk.

In addition, and time k we observe a sample Zk = HkXk + vk, where:

• Hk is the state-observation model (known)

• Wk is measurement noise, drawn from a multivariate Gaussian with zero mean and covariance Rk.

2.2 Example

A truck drives along a straight road, starting at position 0. Time indices k refer to ∆t intervals. We
want to keep track of the truck position y and velocity ẏ, i.e.,

xk =

(
yt
ẏt

)
.

We consider constant F , Q, R, H (hence time indices are omitted, and B = 0, as no external inputs are
involved. We set the matrices as follows. We assume that at the k’th time interval there is a constant
acceleration given by ak, which is normally distributed with zero mean and σa standard deviation. Then
applying Newton’s laws, we can write

xk = Fxk−1 + akG,

where

F =

(
1 ∆t
0 1,

)
and

G =

(
1
2 (∆t)2

∆t

)
.

This means that we can write
xk = Fxk−1 +Wk,

with
wk ∼ GGT · N (0, σ2

a)

i.e., wk is a sample from a multivariate normal distribution, with zero mean and covariance σ2
aGGT . At

time k we measure the position of the truck

zk = Hxk + vk,

where H = (1, 0)T and vk ∼ N (0, σ2) is measurement noise.
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2.3 The conditional distributions

Let z̃k = (z1, ...zk) denote the first k observations collectively. At time k−1 we want to predict the next
system state based on z̃k−1, denoted as x̂k|k−1 := E[Xk|z̃k−1]. In addition, once the k’th observation zk
arrives, we update our model to x̂k|k := E[Xk|z̃k]. We also model the covariance matrices corresponding
to the random variables Xk|z̃k−1 and Xk|z̃k (whose means we denote x̂k|k−1 and x̂k|k, respectively) by

Pk|k−1 = E
[
(Xk − x̂k|k−1)(Xk − x̂k|k−1)

T |z̃k
]
,

and
Pk|k = E

[
(Xk − x̂k|k)(Xk − x̂k|k)

T |z̃k
]
.

Recall from the previous lesson that if

(
X
Z

)
is a multivariate Gaussian, then X|Z is also a multi-

variate Gaussian with mean µX + ΣXZΣ
−1
ZZ(Z − µZ) and covariance ΣXX − ΣXZΣ

−1
ZZΣZX . Since all

noises in our case are Gaussian, and all random variables are linear combinations of Gaussian random
variables, it follows that Xk|z̃k−1 ∼ N

(
x̂k|k−1, Pk|k−1

)
and Xk|z̃k ∼ N

(
x̂k|k, Pk|k

)
.

2.4 Prediction and update

Suppose that at some point, we have x̂k|k−1 and Pk|k−1. In the above example, suppose we know that
at time 0 both the position and the velocity are both zero i.e.,

x̂k|k−1 =

(
0
0

)
and

Pk|k−1 =

(
0 0
0 0

)
.

The algorithm works in two alternating steps:
Prediction: Since Xk = FkXk−1 +Bkuk +Wk we have

x̂k|k−1 = E[Xk|z̃k−1] = Fk E[Xk−1|z̃k−1] = Fkx̂k−1|k−1 +Bkuk,

Pk|k−1 = Cov(Xk|z̃k−1) = FkPk−1|k−1F
T
k +Qk

where the latter equation holds as given z̃k−1, Xk−1 and Wk are independent.
Update: Since Zk = HkXk + Vk,[

Xk

Zk

] ∣∣∣ z̃k−1 ∼ N
([

x̂k|k−1

Hkx̂k|k−1

]
,

[
Pk|k−1 Pk|k−1H

T
k

HkPk|k−1 HkPk|k−1H
T
k +Rk

])
.

Since

[
Xk

Zk

] ∣∣∣ z̃k−1 is Gaussian, conditioning on Zk (i.e., on z̃k), we have

x̂k|k = E[Xk|z̃k]

= E[Xk|z̃k−1] + Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1 (
Zk −Hkx̂k|k−1

)
and

Pk|k = Cov[Xk|z̃k]

= Pk|k−1 − Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
HkPk|k−1.
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Remark 2.1. The factor Zk −Hkx̂k|k−1 = zk −E[Zk|Zk − 1] is called innovation, whose covariance is
HkPk|k−1H

T
k +Rk.

Remark 2.2. The factor Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
is called the Kalman gain, and reflects the

importance of the innovation.
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